INTRODUCTION

“Face inversion effect”: inversion impairs face recognition to a greater extent than object recognition (Hochberg & Galper, 1967).

A “same/different” face identification task: pairs of faces

- temporal inversion (e.g., backwards speech);
- frequency inversion centred around 4000 Hz;
- inversion centred around 2500 Hz.

METHODS

Stimuli: • Voice stimuli: the American vowels “A” and “I” in a /hVd/ syllable, recordings of Hillenbrand et al. (1995)
• Instrument stimuli: Exp.3: two 3-notes melodies (C-D-G and C-F-G)
• Exp. 4: 2 notes (D and F) (MIDI synthesizer of the PC sound card)

4 conditions of presentation: - no inversion;
- temporal inversion (e.g., backwards speech);
- frequency inversion centred around 4000 Hz;
- frequency inversion centred around 2500 Hz.

EXPERIMENT 1: GENDER IDENTIFICATION

Subjects: 20 healthy subjects, native Canadian-French speakers (10 women) (21-23 years old).

Task: A gender identification task on syllables

• Speaker discrimination: normal condition: no difference (F=3.3, p=0.063) normal condition: no difference (F=3.3, p=0.063) 4000 Hz condition: no difference (F=0.011)

EXPERIMENT 2: SPEAKER DISCRIMINATION

Subjects: 20 different healthy subjects, native Canadian-French speakers (10 women) (20-50 years old.)

Task: A “same/different” speaker discrimination task.

Results: Significant effect of inversion condition on performance (p<0.005).

Performance was better in the normal condition (78.6%) than in the:
- temporal inversion condition (74.1%) (p=0.005)
- frequency inversion condition (66.5%) (p=0.001)

Performance degraded by inversion.

Performance above chance, even in identifying children’s gender.

EXPERIMENT 3: INSTRUMENT DISCRIMINATION

Subjects: The same 20 subjects than in Exp. 2.

Tasks: A “same/different” instrument discrimination task (similar of Exp. 2). Pairs of melodies: 8 strings, 8 wind.

Results: Significant effect of inversion condition on performance (p<0.001).

Better performance in the normal condition (94.1%) than in the:
- temporal inversion condition (90.9%) (p=0.05)
- frequency inversion around 4000 Hz condition (87%) (p=0.001)
- frequency inversion around 2500 Hz condition (89.7%) (p=0.001).

⇒ Better performance in the instrument discrimination task than in discrimination task (Exp. 2).

⇒ BUT, much easier task than Exp. 2 (even in the normal condition), so difficult to compare.

EXPERIMENT 4: TIMBER (VOICE+INSTRUMENT) DISCRIMINATION

Stimuli: the American vowels “A” and “I” in a /hVd/ syllable, recordings of Hillenbrand et al. (1995)

Task: A “same/different” timber discrimination task: pairs of syllables: 8 male, 8 female speakers, pairs of notes: 8 strings, 8 wind

Results: 1) A significant effect of inversion condition on performance (F=44.007, p<0.001)

Normal condition (73.83%) = temporal inversion condition (73.16%) (p=0.576).

These performances better than in the:
- frequency inversion around 4000 Hz condition (59.18%) (p<0.001)
- frequency inversion around 2500 Hz condition (65.51%) (p<0.001).

2) Interaction Inversion condition * Stimuli type

Comparison Voices/Instruments: repeated measure ANOVA: F=39.67, p<0.001).

These performances better than in the:
- frequency inversion around 4000 Hz condition (59.18%) (p<0.001)
- frequency inversion around 2500 Hz condition (65.51%) (p<0.001).

⇒ Same manipulation (sound inversion): Speaker discrimination was more impaired than instrument discrimination.

DISCUSSION AND CONCLUSION

Significant effect of sound inversion on performance.

Stronger effect for frequency inversion than for temporal inversion.

Performance was always above chance level (50%), even in the most disrupting frequency-inversion conditions.

Exp. 4 suggests a “voice inversion effect”: a stronger effect of inversion on the voice discrimination performance than on the instrument discrimination performance.

REFERENCES

This work was supported by grants from the University of Montreal, NSERC and FCAR.

Please address correspondence to Catherine Bédard, e-mail: catherine.bedard.1@umontreal.ca